A Profitable Sub-prime Loan: Obtaining the Advantages of Composite Order in Prime-Order Bilinear Groups

نویسندگان

  • Allison Bishop
  • Sarah Meiklejohn
چکیده

Composite-order bilinear groups provide many structural features that are useful for both constructing cryptographic primitives and enabling security reductions. Despite these convenient features, however, composite-order bilinear groups are less desirable than prime-order bilinear groups for reasons of both efficiency and security. A recent line of work has therefore focused on translating these structural features from the composite-order to the prime-order setting; much of this work focused on two such features, projecting and canceling, in isolation, but a result due to Seo and Cheon showed that both features can be obtained simultaneously in the prime-order setting. In this paper, we reinterpret the construction of Seo and Cheon in the context of dual pairing vector spaces (which provide canceling as well as useful parameter hiding features) to obtain a unified framework that simulates all of these composite-order features in the prime-order setting. We demonstrate the strength of this framework by providing two applications: one that adds dual pairing vector spaces to the existing projection in the Boneh-Goh-Nissim encryption scheme to obtain leakage resilience, and another that adds the concept of projecting to the existing dual pairing vector spaces in an IND-CPA-secure IBE scheme to “boost” its security to IND-CCA1. Our leakage-resilient BGN application is of independent interest, and it is not clear how to achieve it from pure composite-order techniques without mixing in additional vector space tools. Both applications rely solely on the Symmetric External Diffie Hellman assumption (SXDH).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

We develop an abstract framework that encompasses the key properties of bilinear groups of composite order that are required to construct secure pairing-based cryptosystems, and we show how to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In particular, we define a generalized version of the subgroup decision problem and give explicit constructions...

متن کامل

Beyond the Limitation of Prime-Order Bilinear Groups, and Round Optimal Blind Signatures

At Eurocrypt 2010, Freeman proposed a transformation from pairing-based schemes in composite-order bilinear groups to equivalent ones in prime-order bilinear groups. His transformation can be applied to pairing-based cryptosystems exploiting only one of two properties of composite-order bilinear groups: cancelling and projecting. At Asiacrypt 2010, Meiklejohn, Shacham, and Freeman showed that p...

متن کامل

Transforming Hidden Vector Encryption Schemes from Composite to Prime Order Groups

Predicate encryption is a new type of public key encryption that enables searches on encrypted data. By using predicate encryption, we can search keywords or attributes on encrypted data without decrypting ciphertexts. Hidden vector encryption (HVE) is a special kind of predicate encryption. HVE supports the evaluation of conjunctive equality, comparison, and subset operations between attribute...

متن کامل

Comparing the Pairing Efficiency over Composite-Order and Prime-Order Elliptic Curves

We provide software implementation timings for pairings over composite-order and prime-order elliptic curves. Composite orders must be large enough to be infeasible to factor. They are modulus of 2 up to 5 large prime numbers in the literature. There exists size recommendations for two-prime RSA modulus and we extend the results of Lenstra concerning the RSA modulus sizes to multi-prime modulus...

متن کامل

Dual System Groups and its Applications - Compact HIBE and More

We introduce the notion of dual system groups. – We show how to derive compact HIBE by instantiating the dual system framework in Waters (Crypto ’09) and Lewko and Waters (TCC ’10) with dual system groups. Our construction provides a unified treatment of the prior compact HIBE schemes from static assumptions. – We show how to instantiate dual system groups under the decisional subgroup assumpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013